
PHYSICAL REVIEW E OCTOBER 1997VOLUME 56, NUMBER 4
Dynamic fracture of disordered viscoelastic solids

P. Heino and K. Kaski
Laboratory of Computational Engineering, Helsinki University of Technology, Miestentie 3, FIN-02150 Espoo, Finland

~Received 13 December 1996; revised manuscript received 6 June 1997!

Dynamic fracture of disordered viscoelastic solids is studied computationally using the Born-Maxwell
model. Two types of disorder have been considered, namely, correlated density disorder and topological
disorder. In both cases fracture instability in terms of crack branching occurs. For density disorder dense spots
in the system are found to be an effective mechanism of crack arrest. This shows in the length of the daughter
cracks and also serves as a mechanism for crack curving. In case of topologically disordered systems we see
branch bending. The complicated topology of cracks obeys a scaling law which has been found experimentally.
@S1063-651X~97!00210-9#

PACS number~s!: 62.20.Mk, 61.43.Bn, 83.50.Tq
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I. INTRODUCTION

Recently dynamics of fracture has received considera
interest. Experiments@1–4#, numerical simulations@5–7#,
and analytical calculations@8–10# have been performed in
order to gain insight into the complicated nature of cra
propagation. In the case of amorphous brittle solids exp
mental results show that a crack propagates with a velo
much below the Rayleigh speed. After reaching a criti
value an instability occurs and the crack velocity starts
change in magnitude, or direction or both. Yet these p
nomena and the dependence of the system’s behavior o
length scale are not well understood@11#.

From a microscopic point of view the material is cons
ered as a set of mutually interacting particles~atoms or mol-
ecules!. A crack propagates, when the distance between
adjacent particles becomes so large, that the interaction
tween them ceases, i.e., the bond between them breaks.
an approach is physically correct, but can not be used
study very large systems. However, from the engineer
point of view material of macroscopic scale objects is mo
eled as a continuum. A failure occurs when the maxim
stress or some other critical parameter@12# exceeds a given
threshold. Some of these criteria are isotropic and can
explain the easy directions of crack propagation presen
molecular-dynamics studies@5#. In addition, in microstruc-
ture, many materials are anisotropic, inhomogeneous or
ordered, which make continuum approach difficult to mod

Because of these difficulties at both ends of the len
scale it makes sense to study fracture in the intermediate,
mesoscopic scale. There the material is considered neith
a continuum, nor as a set of atoms, but rather as a discre
set of interacting mass sites, obtained by dividing the ma
rial into regions@13–15#.

Apart from the dependence of fracture on the length sc
there is also the dependence on the disorder of the mate
In this study we consider two types of disorder, name
topological and correlated. Topological disorder exists
amorphous materials which can be described as random
works with random locations of particles or mass sites. C
related disorder is found for example in paper as a result
being a fiber composite.
561063-651X/97/56~4!/4364~7!/$10.00
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II. THE BORN-MAXWELL MODEL

In order to describe the dynamic fracture behavior o
disordered system at mesoscopic length scale and under
stant rate loading we have chosen a dynamic Maxw
dissipative model as previously@14,15#. When the system
under loading deforms, two~initially ! nearest neighbor sitesi
and j move giving rise to elastic and plastic displacemen
The total displacement and elastic displacement of sitei are
denoted byuW i and uW e,i , respectively. In the Born-Maxwel
model these sites are connected with springs and dash
The spring constants area i j and b i j , representing tensile
and bending stiffness of a bondi j , respectively. The dash
pots are parametrized with coefficientt that describes the
rate of plastic deformation phenomenologically.

Let us now denote the elongations of the springs para
and perpendicular to the unit vector from sitei to site j with
ee,i j ,i andee,i j ,' , respectively. Then the energy of the bon
between neighboring sitesi and j can be written as@15#

Hi j 5
a

2
ee,i j ,i

2 1
b

2
ee,i j ,'

2 . ~1!

The elongations of the springs are related to the elastic
placements of the sites:

ee,i j ,i5dW i j ,i•~uW e, j2uW e,i !, ~2!

ee,i j ,'5dW i j ,'•~uW e, j2uW e,i !, ~3!

wheredW i j ,i is the unit vector of an undeformed bondi j and
dW i j ,' is a unit vector perpendicular to it, see Fig. 1.

Sitesi and j are considered to represent certain pieces
material around them. Their masses,mi andmj , depend on
the density of the system and on the size of the pieces. N
the equation of motion for a mass sitej can be written

mjuẄ j52¹ (
i Pnnj

Hi j 5 (
i Pnnj

a@~uW e,i2uW e, j !•dW i j ,i#dW i j ,i

1b@~uW e,i2uW e, j !•dW i j ,'#dW i j ,' , ~4!
4364 © 1997 The American Physical Society
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56 4365DYNAMIC FRACTURE OF DISORDERED VISCOELASTIC . . .
wherennj denotes the set of nearest neighbors of sitej . As
mentioned above plasticity of materials is taken into acco
as Maxwell-type dashpots, in which the elastic displa
ments of sites relax according to~see Ref.@15# for details!

uẆ e, j5uẆ j2
1

t
uW e, j . ~5!

The criterion of local rupture in this model is based on t
distance between the neighboring mass sitesi and j . When
the length of this bond exceeds a given threshold, the b
breaks irreversibly~i.e., Hi j 50) and a crack propagate
across the bondi j .

In the simulations the integration is performed with t
original Verlet algorithm@16# by setting the initial conditions

uW i5uW e,i50W and uẆ i50W . With free vertical boundaries, th
bottom row of mass sites is fixed and the loading is reali
by moving the topmost row of mass sites. In order to mi
mize the initial generation of sound waves in the beginn
of loading it is introduced in two stages. First for short tim
interval 0<t<Tr the loading is increased gradually by mo
ing the topmost row of mass sites with the varying ra
1
2 vs$12cos@p(t/Tr)#%, and then (t.Tr) keeping the rate con
stantvs .

In order to relate our model with macroscale models
next discuss the continuum systems. They are usually so
with the finite element method~FEM! @17,18#, obtained by
dividing the system into elements. The energetics of e
individual element is described by its deformation. In FE
one needs an interpolation scheme for the displacement
within each element. However, when the system is stron
disordered, a correct interpolation scheme is hard, if not
possible to find. In contrast no such interpolation schem
needed in the case of the Born-Maxwell~BM! model. On the
other hand the maximum principal stress of finite elem
systems is often used as a critical parameter for rupture,
the fracture criterion is isotropic. However, at the mes
copic or microscopic length scales anisotropy plays a sign
cant role, because there the crack propagation arises
bond failures, the propagation direction being perpendicu
to each breaking bond. When a lumped mass approxima
@17# is used in FEM, the kinetic energy of the system is
sum of the kinetic energies of nodes~mass is lumped to a
node having certain velocity!. This is identical with how the
kinetic energy is calculated for the Born-Maxwell model.

FIG. 1. Description of the model. Two nearest-neighbor sites
connected with dissipative Born-Maxwell springs. The elastic a
plastic displacements of the sites results in elongations of
springs and dashpots, respectively. The force due to these sp
drives the mass sites.
t
-

d

d
-
g

e
ed

h

ld
ly
-
is

t
e.,
-
-
m
r

on

addition, the potential energy of a regular spring network a
the finite element model can be shown to be identical@19#.
However, the potential energy of the BM model differs fro
that of a regular spring network and thus from that of t
finite element model.

III. TOPOLOGICAL DISORDER

In the previous section we described how two neare
neighbor sites interact, but did not specify when two ma
sites of a system are considered nearest neighbors. In a r
lar lattice this is not a problem, and studies have been d
both in square and triangular lattices@14,15#. However, the
underlying symmetry affects the fracture behavior, since
crack propagates perpendicular to the bonds.

The situation is different in disordered systems. For e
ample, the microstructure of amorphous materials do not
semble any type of lattice. In order to tackle this type
disorder some generic networks topologies have rece
been considered@20,21#. Such networks are modified from
regular lattice by randomly moving the sites, but keeping
nearest neighbors the same. In addition to this disorde
microstructure some composite materials, e.g., paper, s
disorder in the mesoscopic scale.

Another approach to generate a random network is to r
domly select the locations for mass sites@22#. In this case the
nearest-neighbor problem can be solved using Voronoi p
gons. Given a finite set of pointspW k the Voronoi polygon of
a pointpW i , L(pW i) is defined as the set of points that are clos
or equally close to pointpW i with respect of any other poin
pW j :

L~pW i !5$pW ud~pW ,pW i !<d~pW ,pW j !%, ~6!

whered(•,•) is the distance measure@23#. In our case the

Euclidean measured(pW 1 ,pW 2)5A(pW 12pW 2)•(pW 12pW 2) was
used. According to this definition two sitesi and j are con-
sidered nearest neighbors, if their Voronoi polygons shar
common side. If the locations of these sites are selected
domly, it is highly improbable that this side reduces to
point, as in square lattices on diagonals.

In Delaunay’s triangulation two nearest-neighbor sites
the Voronoi polygon are connected with a straight line. T
triangulation can be made fast using sophisticated algorith
such as those described by Macedonioet al. or Joe@23,24#.
In this way the generated network has neither a symm
nor an initial lattice that might affect the results. If the bon
in the Born-Maxwell model are considered to represent e
tic bars of certain cross-sectional area, the elastic parame
of the bond should be inversely proportional to the init
length of a bond. We have used this interpretation in o
simulations. Thus, in practice an initial location for a site
not selected entirely randomly, because two sites should
be too close to each other. Also several mass sites shou
on the boundaries for keeping bond lengths reasonably s
near the boundaries.

IV. CORRELATED DISORDER

Apart from the disorder in the locations of mass sites
can show in the density, elastic parameters or rupture thr
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4366 56P. HEINO AND K. KASKI
old. In this study the density of the system is considered
be a function of location. This is the case in a sheet of pa
as measured byb radiogram or is even visible against ligh
In earlier studies@25# elastic parameters were consider
proportional to density, though recent findings indicate tha
is the rupture threshold that controls the fracture proc
@26#. However, in the latter study the static model consis
of interacting cells and the fracture proceeded by breakin
cell when the plastic strain exceeded a given threshold va
In our model crack propagates, when the distance betw
two mass sites~which depends on the initial bond lengthl 0,
and plastic and elastic displacements! exceeds a given
threshold. This makes the comparison of these two mo
fairly difficult.

The mass distribution in paper is strongly correlated, i
there exists strong elliptic areas called flocs and weak sp
In order to find out the correlation length or size of flocs o
can determine it as the half width at half height of the au
correlation function of the mass distribution@27#. This kind
of correlated disorder can be generated by placing ellipt
unit mass flocs of given size at random locations on a tw
dimensional model sheet@28#. The mass distribution is the
result of overlapping flocs. Here we allowed anisotropy
the mass distribution by choosing the principal axis of ell
tical flocs to be either in theX or Y direction. The size of
these flocs is defined as the length of the principal axis
the aspect ratio of a floc is defined by the length of floc’sX
axis divided by the length of the floc’sY axis.

V. RESULTS

A. Summary of previous results

In the previous study@15# we concentrated on crac
branching due to the dynamics of the system. Crack bran
ing was observed in a system without disorder, where
branches were straight and formed an angle of 15°–33°,
pending on the ratioa/b. We also observed oscillations i
the crack speed and crack boundary speed beyond a cr
velocity. Even though these oscillations were present bey
a critical crack velocity, analysis with the BM model su
gested that the crack boundary velocity should determine
conditions for crack branching.

In addition to ordered systems we studied systems, wh
the elastic constants of the bonds were selected from a
form distribution, but by keeping the relationa/b52 con-
stant @15#. This inclusion of disorder added noise to th
branching angles. On the other hand, an inclusion of diss
tion was seen to decrease the lengths of daughter crack

B. Correlated density distribution

In case of correlated disorder we have studied syst
with density variation of 5, 10, and 20 % in a regular tria
gular lattice, which is comparable with those found in co
mercial paper grades~typically <10%).

A very heterogeneous system can be generated by le
only few flocs to overlap but when the number of flocs
increased, the variation~standard deviation per mean! de-
creases. For a typical system~system width
51703height555, with floc size 20 and aspect ratio 5
distribution with 20% variation can be generated w
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'143103 flocs, while a distribution with 10% variation
needs'553103 flocs and 5% variation is obtained wit
'2203103 flocs. A typical distribution with 10% variation
is shown in Fig. 2.

As there is no agreement on whether these variati
should be reflected in the elastic parameters@25# or the rup-
ture threshold@26#, we have studied both types of disorde
The average value for the mass of a site was set to 1,
average elastic parameters were set toa5500 andb5250,
the average rupture threshold was set to 1%, the phenom
logical dissipation constant was set tot525 and the strain
rate was set tovs51024. ~The bond breaks, when its lengt
exceeds (11p) l 0,i j , where l 0,i j is the initial distance be-
tween the mass sitesi and j and p is the rupture threshold
whose average is 1%.! In all these systems~of size 170355)
we used flocs of size 20 along the largest direction and
aspect ratios of 5 and 1/5. In the case of large density va
tion we used flocs of size 10 and 40 along the largest dir
tion and the same aspect ratios. The statistics was taken
10 runs for each parameter set.

FIG. 2. A typical flocculated density distribution for a system
size 170355. The system has'593103 overlapping flocs of size
2034 and a variation of 10%. Light areas are dense.
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56 4367DYNAMIC FRACTURE OF DISORDERED VISCOELASTIC . . .
We found that the strength of the system, i.e., the rupt
stress, increases when disorder of the system decreases~Fig.
3!. This is due to the weak spots in the system, where a c
can initiate. If these spots are large enough, the crack
propagate. When the disorder is correlated and the floc
is large enough, the weak spots can be large. This also
plains, why systems with small flocs are stronger than s
tems with large flocs.

We also found that systems with the floc aspect ratio 5
weaker than systems with floc aspect ratio 1/5. This is du
the flocs near the weak spots in systems with the floc as
ratio 1/5. These flocs may arrest an already initiated cr
and thus prevent it from propagating. In systems with fl
aspect ratio 5 also the weak spots are oriented perpendi
to the applied strain, and therefore it is unlikely that a fl
could arrest a propagating crack.

The flocs may arrest also a propagating main or daug
cracks. When disorder is small this is not likely to occur, a
a crack propagates straight and produces long daug
cracks. However, when the system is more disordered,
flocs are likely to arrest daughter cracks, resulting in o
short daughter cracks. When the main crack is arrested
floc, a daughter crack is likely to propagate through a we
spot and becoming a new main crack. This phenome
gives rise to crack curving.

Systems in which disorder is reflected in the elastic
rameters are found to be stronger than systems, where d
der is in the rupture threshold. In these systems crack a
is more often seen than in systems, where the disorder
the rupture threshold. Thus systems with large disorder in
elastic parameters behave quantitatively different from s
tems with small disorder in the rupture threshold, even if
strength of these systems is the same.

In order to study the finite size scaling behavior of t
stress-strain curves we used 11 different system sizes of
angular shape with width (X direction! being three times the
height (Y direction!. The largest system we studied consist
of '23105 mass sites. The density distribution was gen

FIG. 3. Fracture stress in different systems with density dis
der. Left and right boundary of each bar indicate the minimum
maximum stress for systems with correlated disorder as determ
from ten runs. The scatter in the data is approximately 10%, wh
is expected to be larger than in the case of a static resistor net
@29# but sufficiently small for a fully dynamical system, such
ours. The mean and mean6 standard deviation are also shown. T
type of system is denoted by three symbols. The first55, 10, 20 %
indicates variation of the density distribution, the second5e,t cor-
responds to variations in elastic parameters (e) or the rupture
threshold (t). The third510, 20, 40 is the size of the floc, whos
aspect ratio is 5 above the dashed line and 1/5 below it.
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ated using flocs of size 20 and aspect ratio 5. The frac
stress (s f) and fracture strain (e f) of the system decreases a
the size of the system increases and seems to follow the f
suggested by Duxburyet al. @29#:

s f5
1

a1b~ lnL !c
, ~7!

where L is the size~i.e., width! of the system, cf. Fig. 4.
Studies by Korteojaet al. @25# suggested that the fractur
stress could have a nonzero value at the thermodynam
limit, which our results do not support. However, in th
work a static continuum model was used, which does
resemble the random fuse network model by Duxburyet al.
@29#. Our model consists of breaking bonds and is theref
closer to the model of Duxbury and thus it is understanda
that the scaling behavior of these two models is quite simi

For fracture strain (e f) the estimate of the power-law ex
ponent was found to bec'0.56, which is also in agreemen
with the theoretical considerations@29#. However, the frac-
ture stress tends to 0 much faster (c'3.2). The reason for
this is depicted in Fig. 5, where we show a typical stress
strain curve for a small system. When the fracture str
decreases by an amountDe f 1, the fracture stress decreas
by an amountDs f 1'De f 1E(e f 1), whereE(e) is the effec-
tive Young’s modulus]s/]e. Due to the phenomenologica
dissipation,E(e) is fairly small for largee ~see Fig. 5!.
When the fracture strain decreases even further by an am
De f 2, the fracture stress decreases by an amo
Ds f 2'De f 2E(e f 2). Since in dissipative system
E(e f 2).E(e f 1) the fracture stress tends to zero faster th
the fracture strain.

C. Topological disorder

In the case of topological disorder we chose the init
locations of mass sites at random and set the elastic pa
eter values inversely proportional to the initial lengths of t
bonds. In the model only nearest-neighbor interaction is
ing considered. In Fig. 6 we show the neighbor distributi

r-
d
ed
h
rk

FIG. 4. Fracture stress (s f) divided bya ~solid line! and frac-
ture strain (e f , dashed line! as functions of the size of the syste
~flocculated density disorder!. Vertical bars indicate maximum an
minimum, horizontal bars indicate the average. Numbers above
bars indicate the number of systems studied. Lines stand for
scaling form of Eq.~7! fitted by the data.
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4368 56P. HEINO AND K. KASKI
of nearest-neighbor mass sites taken from four topologic
disordered systems~boundaries excluded!. In this figure the
lower limit for the bond length, due to the rejection criterio
of the random mass site placement procedure, is clearly
ible. On the other hand the the upper limit of bond lengths
determined by the density of mass sites. In Fig. 6 we sh
also the pair-distribution function@30# for distances smalle
than roughly 3 times the nearest-neighbor distance. There
see a strong negative correlation, since the existence of s
bonds was prohibited. Then at about the nearest neigh
distance there exists a strong positive correlation due to
given density~determined by the number of sites per area! of
the system. For long distances we do not see any corr
tions. In Fig. 6 we also show the distribution of inverse bo
lengths, which is comparable to the distribution of elas
constant of the bonds.

In our model the elastic parameters determine the ma
scopic features of the system, i.e., the Poisson ratio and

FIG. 5. Stress (s) vs strain (e) in a small system with corre
lated density disorder. For small strain the Young’s modulus
larger than for large strain. Thus the fracture stress tends to 0 f
than the fracture strain.

FIG. 6. Bond length~nearest-neighbor distance! distribution~a!
and pair-distribution function~b! taken from four topologically dis-
ordered systems. For short distances the distribution function i
since the existence of such bonds is prohibited by the proced
Then there is a strong positive correlation at the point determi
from the density of sites. For large distances the distribution
uncorrelated. This was checked until the boundary effects bec
significant, i.e., up to 4.5. The elastic constants were selected
portional to the inverse of bond lengths, distribution~c!.
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Young’s modulus. We have calculated these relations fr
the model by applying the strain of 10% to the system a
solving the stable configuration. The dependence of the P
son ratio on the ratioa/b is depicted in Fig. 7. We found
that the deviation in the Poisson ratio was small; all t
obtained values (50 topologically disordered systems fo
given ratioa/b) are shown in Fig. 7. On a semilogarithm
scale the Poisson ration seems to be of the form of a sig
moid function. It is noteworthy that fora5b the Poisson
ratio was 0 regardless of the initial configuration. Thus
may require one of the free parameters to be fixed such
the Poisson ratio is zero fora5b. As the sigmoid function is
exponential and has ln(a/b) as an argument, the Poisson r
tio can be given in a simpler form:

n53.90S 1

2.911~a/b!20.98
2

1

2.9111D . ~8!

In topologically disordered systems the elastic parame
a i j andb i j were chosen inversely proportional to the initi
length of the bond. In the followinga and b denote the
average of these parameters. The Young’s modulus sh
be of the same order asa andb and go to zero as botha and
b go to 0. Thus we were led to try an estimate of the for

E5aa1bb1cadb12d. ~9!

For numerical stabilityd should not be either 0 or 1. In fac
this function could predict the macroscopic Young’s mod
lus remarkably well. The fitting factora was found to be
extremely close to 1. With the restrictiona51 the correction
parameters wereb'0.24,c'0.47, andd'0.59. In Fig. 7 the
macroscopic Young’s modulus is plotted versus its estim
The density of the bonds does not affect the Young’s mo
lus, since the mean of the elastic parameters is given, and
locations for the bonds are random. In addition, the Youn
modulus seems not to depend on the shape of the syste

s
ter

0,
re.
d
s
e

o-

FIG. 7. Poisson ratio vs loge(a/b) ~open circles! of topologically
disordered systems and sigmoid function~curved line! fitted to
these data. The estimated Young moduli coincides with the
Young moduli reasonably well~black dots and straight line!, see
text.
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56 4369DYNAMIC FRACTURE OF DISORDERED VISCOELASTIC . . .
In the simulation of dynamic fracture the elastic para
eters were chosen to be on averagea5500 andb5250,
which corresponds to the Poisson ration50.1. The mass of a
site was set to one third of the mass of triangles surround

FIG. 8. Typical fracture path obtained from a topologically d
ordered system. The triangulation of 1/9 of the system and cr
propagation in it are presented below the path.
-

g

it. Before loading, a cut was introduced to the left fr
boundary of the system to serve as a seed for crack pr
gation. The length of this cut was 5% of the width of th
system.

A typical fracture path is presented in Fig. 8. It shows
relatively straight path in the beginning of propagation an
complicated, branched form later. The daughter cracks
seen to curve during propagation such that the branch
angle depends on the length of the daughter crack. Thi
illustrated in Fig. 9, where we show the daughter crac
distance from the main crack as a function of the length
the daughter crack along theX axis. The data obeys roughl
a power law:yd5axd

b . For smallxd the distance from the
main crack is not of functional form, since these sm
branches are probably responsible for the mist behavio
the fracture surface. For largerxd the given functional form
is clearly seen and these large branches are seen a
hackle behavior. It is quite subjective to determine, wh
cut bonds belong to the mist region and which are classi
as branches. Here the bonds not on the main crack are tre

k

FIG. 10. Spectrum of crack speed in topologically disorde
systems obtained as an average of four runs. It shows that c
speed does not fluctuate randomly.

FIG. 9. Daughter crack’s distance from the main crack
daughter crack’s distance along theX axis in a topologically disor-
dered system and power-law fit to these data. Long daughter cr
have a branching angle of 15°.
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4370 56P. HEINO AND K. KASKI
as branches, and therefore the extremely short branches
plicate the curving behavior. The power-law exponentb was
found to be 0.6560.02. This is in good agreement with th
experimental value 0.7@1#. We also found that the longes
daughter cracks appear with an angle of about 15°, whic
in excellent agreement with experiments in brittle amorph
materials@31#.

In the unstable region of dynamic fracture the crack sp
changes both in magnitude and direction. Sharon
Fineberg@1# have found experimental evidence that the
changes are oscillatory rather than random fluctuations
addition, Blumenfeld@11# by using the Yoffe solution@32#
has shown theoretically that the crack speed is oscillat
Also when noise was added the situation became more c
plicated showing intermittency and quasiperiodicity. O
Born-Maxwell model with no disorder shows clear oscill
tory behavior but in the case of topological disorder t
model produces a behavior which is characterized wit
fairly wide power spectrum of the crack speed, see Fig.
.
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VI. SUMMARY

A dynamical dissipative model was used to study fract
in systems with two types of disorder. First we studied c
related mass density variation, which resulted in simi
variations in either the elastic parameters or the fract
threshold. Results also show similar finite size scaling in
strength of the system as proposed by Duxburyet al. @29#.
The flocculated density variations are seen as a mecha
for crack arrest. As a second type of disorder we stud
systems, in which the initial locations for mass sites we
selected randomly. We showed, how to select the elastic
rameters for a given Poisson ratio and Young’s modul
Crack speed oscillation was seen as well as daughter c
curving. The experimentally found scaling behavior of cra
curving was confirmed.
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