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Dynamic fracture of disordered viscoelastic solids
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Dynamic fracture of disordered viscoelastic solids is studied computationally using the Born-Maxwell
model. Two types of disorder have been considered, namely, correlated density disorder and topological
disorder. In both cases fracture instability in terms of crack branching occurs. For density disorder dense spots
in the system are found to be an effective mechanism of crack arrest. This shows in the length of the daughter
cracks and also serves as a mechanism for crack curving. In case of topologically disordered systems we see
branch bending. The complicated topology of cracks obeys a scaling law which has been found experimentally.
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PACS numbgs): 62.20.Mk, 61.43.Bn, 83.50.Tq

I. INTRODUCTION Il. THE BORN-MAXWELL MODEL

Recently dynamics of fracture has received considerablg. In order to describe the dyngmlc fracture behavior of a

. : . _ _ Bisordered system at mesoscopic length scale and under con-
interest. Experiment$1—4], numerical simulationg5-7], stant rate loading we have chosen a dynamic Maxwell-
and analytical calculationg8—10] have been performed in dissipative model as previousfL4,15. When the system
order to gain insight into the complicated nature of crack,qer loading deforms, tw@nitially) nearest neighbor sités
propagation. In the case of amorphous brittle solids experiangj move giving rise to elastic and plastic displacements.
mental results show that a crack propagates with a velocityhe total displacement and elastic displacement ofisite
much below the Rayleigh speed. After reaching a Criticaldenoted byJ- and . . respectively. In the Born-Maxwell
value an instability occurs and the crack velocity starts qy0e| these sites are connected with springs and dashpots.

change in magnitude, or direction or both., Yet the_se pheThe spring constants are; and B;;, representing tensile
nomena and the dependence of the system’s behavior on thg q bending stiffness of a bongl, respectively. The dash-

length scale are not well understofidl]. o _pots are parametrized with coefficientthat describes the
From a microscopic point of view the material is consid- rate of plastic deformation phenomenologically.
ered as a set of mutually interacting particiagoms or mol- Let us now denote the elongations of the springs parallel

eculeg. A crack propagates, when the distance between tw@nd perpendicular to the unit vector from site sitej with
adjacent particles becomes so large, that the interaction b@é’in” andegj , , respectively. Then the energy of the bond
tween them ceases, i.e., the bond between them breaks. Susétween neighboring sitésandj can be written a§15]

an approach is physically correct, but can not be used to

study very large systems. However, from the engineering a B,

point of view material of macroscopic scale objects is mod- Hij :Efe,ij,”—’—gee,ij,i . (1)
eled as a continuum. A failure occurs when the maximum

stress or some other critical paramdt&®] exceeds a given
threshold. Some of these criteria are isotropic and cann
explain the easy directions of crack propagation present
molecular-dynamics studig$]. In addition, in microstruc-

he elongations of the springs are related to the elastic dis-
i lacements of the sites:

ture, many materials are anisotropic, inhomogeneous or dis- €e,ij,| = dij |- (Ue,j —Ue,i), 2
ordered, which make continuum approach difficult to model.
Because of these difficulties at both ends of the length €eijr=0ij 1 - (Ugj—Ug), ®)

scale it makes sense to study fracture in the intermediate, i.e.,
mesoscopic scale. There the material is considered neither g3 . .5 is the unit vector of an undeformed boridand
a continuum, nor as a set of atoms, but rather as a discretizg‘I L . . . "
set of interacting mass sites, obtained by dividing the mateij.. IS @ unit vector per_pendlcular to it, see F'g'.l' .
rial into regions[13—15. Slthl andj are c0n3|dered to represent certain pieces of
Apart from the dependence of fracture on the length scaig'aterial around them. Their massesg, andm; , depend on
there is also the dependence on the disorder of the materid[!€ density of the system and on the size of the pieces. Now
In this study we consider two types of disorder, namely,tN€ €quation of motion for a mass sjtean be written
topological and correlated. Topological disorder exists in
amorphous materials which can be described as random net-
works with random locations of particles or mass sites. Cor-
related disorder is found for example in paper as a result of it R R R R
being a fiber composite. + B[ (Ugj—Ugj) - dij  1dij 1 » (4

m,-GJ:—ViEnn Hi;=,2 a[(l]e,i_Je,j)'aij,ll]aijll\
& ntj

|enn]~
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addition, the potential energy of a regular spring network and
\)4 the finite element model can be shown to be identit8].
g ﬁ/ EijL However, the potential energy of the BM model differs from
Epin _ “ilg that of a regular spring network and thus from that of the

€ L
g/‘_ oo P2 finite element model.
1 T

Ill. TOPOLOGICAL DISORDER

In the previous section we described how two nearest-
o ) ) neighbor sites interact, but did not specify when two mass

FIG. 1. Description of the model. Two nearest-neighbor sites argjtes of a system are considered nearest neighbors. In a regu-
connected with dissipative Born-Maxwell springs. The elastic andgy |attice this is not a problem, and studies have been done
plastic displacements of the sites results in elongations of th%oth in square and triangular latticEs4,15. However, the
springs and dashpots, respectively. The force due to these Springg, yayving symmetry affects the fracture behavior, since the
drives the mass sites. crack propagates perpendicular to the bonds.
The situation is different in disordered systems. For ex-

wherenn; denotes the set of nearest neighbors of Kitds e the microstructure of amorphous materials do not re-
mentioned above plasticity of materials is taken into accoungemple any type of lattice. In order to tackle this type of

as Maxwell-type dashpots, in which the elastic displaceyisorder some generic networks topologies have recently
ments of sites relax according tsee Ref[15] for details been considerefR0,21. Such networks are modified from a
regular lattice by randomly moving the sites, but keeping the
G -:-G-—EJ _ 5) nearest neighbors the same. In addition to this disorder in
AR A microstructure some composite materials, e.g., paper, show
disorder in the mesoscopic scale.

The criterion of local rupture in this model is based on the Another approach to generate a random network is to ran-
distance between the neighboring mass sitasd j. When  domly select the locations for mass sifg]. In this case the
the length of this bond exceeds a given threshold, the bontiearest-neighbor problem can be solved using Voronoi poly-
breaks irreversibly(i.e., H;;=0) and a crack propagates gons. Given a finite set of poinfs the Voronoi polygon of
across the bond . a pointp;, L(p;) is defined as the set of points that are closer

In the simulations the integration is performed with the L .
original Verlet algorithn{16] by setting the initial conditions or .equally close to poinp; with respect of any other point

- - = T . . p;:
Ui=U;=0 and u;=0. With free vertical boundaries, the .

bottom row of mass sites is fixed and the loading is realized L( 5i):{5|d(5'5i)sd(5,5j)}' (6)

by moving the topmost row of mass sites. In order to mini-

mize the initial generation of sound waves in the beginningvhered(-,-) is the distance measuf@3]. In our case the

of loading it is introduced in two stages. First for short time gclidean measured(p;,p,) = \/(51_ Po)-(P1—Po) Was

interval O<t<T, the loading is increased gradually by mov- ysed. According to this definition two sitésandj are con-

Ing the topmost row of mass sites with the varying ratesjdered nearest neighbors, if their Voronoi polygons share a

3v{1—cogm(t/T,)]}, and then {>T,) keeping the rate con- common side. If the locations of these sites are selected ran-

stantvs. domly, it is highly improbable that this side reduces to a
In order to relate our model with macroscale models Wepoint, as in square lattices on diagonals.

next discuss the continuum systems. They are usually solved |n Delaunay’s triangulation two nearest-neighbor sites of

with the finite element methotFEM) [17,18), obtained by  the Voronoi polygon are connected with a straight line. The

dividing the system into elements. The energetics of eackjangulation can be made fast using sophisticated algorithms

individual element is described by its deformation. In FEM g ch as those described by Macedoegial. or Joe[23,24).

one needs an interpolation scheme for the displacement field this way the generated network has neither a symmetry

within each element. However, when the system is strongly,or an initial lattice that might affect the results. If the bonds

disordered, a correct interp0|ati0n SCheme iS hal’d, if not |m'|'n the Born-Maxwe” mode| are Considered to represent e|as-

possible to find. In contrast no such interpolation scheme igc bars of certain cross-sectional area, the elastic parameters

needed in the case of the Born-Maxw@M) model. Onthe  of the bond should be inversely proportional to the initial

other hand the maximum principal stress of finite elemenfength of a bond. We have used this interpretation in our

systems is often used as a critical parameter for rupture, i.esimulations. Thus, in practice an initial location for a site is

the fracture criterion is isotropic. However, at the mesosmot selected entirely randomly, because two sites should not

copic or microscopic length scales anisotropy plays a signifipe too close to each other. Also several mass sites should be

cant role, because there the crack propagation arises frogh the boundaries for keeping bond lengths reasonably small
bond failures, the propagation direction being perpendiculapear the boundaries.

to each breaking bond. When a lumped mass approximation
[17] is used in FEM, the kinetic energy of the system is a
sum of the kinetic energies of nodémass is lumped to a
node having certain velocityThis is identical with how the Apart from the disorder in the locations of mass sites it
kinetic energy is calculated for the Born-Maxwell model. In can show in the density, elastic parameters or rupture thresh-

IV. CORRELATED DISORDER
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old. In this study the density of the system is considered to
be a function of location. This is the case in a sheet of paper
as measured bg radiogram or is even visible against light.

In earlier studieq25] elastic parameters were considered
proportional to density, though recent findings indicate that it
is the rupture threshold that controls the fracture process
[26]. However, in the latter study the static model consisted
of interacting cells and the fracture proceeded by breaking a
cell when the plastic strain exceeded a given threshold value.
In our model crack propagates, when the distance between
two mass siteswhich depends on the initial bond lendth

and plastic and elastic displacemenisxceeds a given
threshold. This makes the comparison of these two models
fairly difficult.

The mass distribution in paper is strongly correlated, i.e.,
there exists strong elliptic areas called flocs and weak spots.
In order to find out the correlation length or size of flocs one
can determine it as the half width at half height of the auto-
correlation function of the mass distributipa7]. This kind
of correlated disorder can be generated by placing elliptical
unit mass flocs of given size at random locations on a two-
dimensional model she¢28]. The mass distribution is the
result of overlapping flocs. Here we allowed anisotropy in
the mass distribution by choosing the principal axis of ellip-
tical flocs to be either in th& or Y direction. The size of
these flocs is defined as the length of the principal axis and
the aspect ratio of a floc is defined by the length of flo¢'s
axis divided by the length of the flocs axis.

V. RESULTS
A. Summary of previous results

In the previous study[15] we concentrated on crack
branching due to the dynamics of the system. Crack branch-
ing was observed in a system without disorder, where the
branches were straight and formed an angle of 15°-33°, de-
pending on the ratiax/ 8. We also observed oscillations in ) S
the crack speed and crack boundary speed beyond a critical F'C- 2- Atyﬁ’]'ca' ﬂocc“";’]‘te‘j densg%/ d's";b“t'_on f?lr a Snyte_m of
velocity. Even though these oscillations were present beyon%ﬁ 4170< d55. The t.syste][nlo(f);@SLQXhZ: over appéng ocs of size
a critical crack velocity, analysis with the BM model sug- and a variation ot 19%. Light areas are dense.
geste_q that the crack bounqary velocity should determine th%14>< 10° flocs, while a distribution with 10% variation
conditions for crack branching. L i .

- . needs~55x10° flocs and 5% variation is obtained with

In addition to ordered systems we studied systems, where : SO . I

) =220x 10° flocs. A typical distribution with 10% variation
the elastic constants of the bonds were selected from a uni= 4 own in Eig. 2
form distribution, but by keeping the relatiaw 3=2 con- 9. 2

stant[15]. This inclusion of disorder added noise to the As there is no a_lgreement on whether these variations
. . . .. should be reflected in the elastic paramef@f or the rup-
branching angles. On the other hand, an inclusion of dissip

tion was seen to decrease the lengths of daughter cracks.ature threshold 26], we have studied bOth. types of disorder.
The average value for the mass of a site was set to 1, the

average elastic parameters were set0500 andB= 250,
the average rupture threshold was set to 1%, the phenomeno-
In case of correlated disorder we have studied systemigical dissipation constant was set te- 25 and the strain
with density variation of 5, 10, and 20 % in a regular trian- rate was set to,=10"“. (The bond breaks, when its length
gular lattice, which is comparable with those found in com-exceeds (% p)lg;;, wherelgj; is the initial distance be-
mercial paper gradegypically <10%). tween the mass sitésandj and p is the rupture threshold,
A very heterogeneous system can be generated by lettinghose average is 1%dn all these system®f size 170 55)
only few flocs to overlap but when the number of flocs iswe used flocs of size 20 along the largest direction and the
increased, the variatiofstandard deviation per meade-  aspect ratios of 5 and 1/5. In the case of large density varia-
creases. For a typical system(system width tion we used flocs of size 10 and 40 along the largest direc-
=170x height=55, with floc size 20 and aspect ratio 5), tion and the same aspect ratios. The statistics was taken over
distribution with 20% variation can be generated with 10 runs for each parameter set.

B. Correlated density distribution
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FIG. 3. Fracture stress in different systems with density disor- 10 102 103
der. Left and right boundary of each bar indicate the minimum and System size
maximum stress for systems with correlated disorder as determined
from ten runs. The scatter in the data is approximately 10%, which FIG. 4. Fracture stresst) divided by« (solid line) and frac-
is expected to be larger than in the case of a static resistor networtkire strain €;, dashed lingas functions of the size of the system
[29] but sufficiently small for a fully dynamical system, such as (flocculated density disorderVertical bars indicate maximum and
ours. The mean and meanstandard deviation are also shown. The minimum, horizontal bars indicate the average. Numbers above the
type of system is denoted by three symbols. The=figst10, 20 %  bars indicate the number of systems studied. Lines stand for the
indicates variation of the density distribution, the seceed cor-  scaling form of Eq(7) fitted by the data.
responds to variations in elastic parameteey Or the rupture
threshold ). The third=10, 20, 40 is the size of the floc, whose ated using flocs of size 20 and aspect ratio 5. The fracture
aspect ratio is 5 above the dashed line and 1/5 below it. stress ¢) and fracture straing;) of the system decreases as
éhe size of the system increases and seems to follow the form
suggested by Duxburgt al.[29]:

—
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We found that the strength of the system, i.e., the ruptur
stress, increases when disorder of the system decrégiges
3). This is due to the weak spots in the system, where a crack 1
can initiate. If these spots are large enough, the crack can o= ———————,
propagate. When the disorder is correlated and the floc size a+b(InL)®
is large enough, the weak spots can be large. This also ex-
plains, why systems with small flocs are stronger than syswhereL is the size(i.e., width of the system, cf. Fig. 4.
tems with large flocs. Studies by Korteojeet al. [25] suggested that the fracture

We also found that systems with the floc aspect ratio 5 argtress could have a nonzero value at the thermodynamical
weaker than systems with floc aspect ratio 1/5. This is due tgmit, which our results do not support. However, in that
the flocs near the weak spots in systems with the floc aspegfork a static continuum model was used, which does not
ratio 1/5. These flocs may arrest an already initiated crackesemble the random fuse network model by Duxbefryl.
and thus prevent it from propagating. In systems with flog[29]. Our model consists of breaking bonds and is therefore
aspect ratio 5 also the weak spots are oriented perpendiculaloser to the model of Duxbury and thus it is understandable
to the applied strain, and therefore it is unlikely that a flocthat the scaling behavior of these two models is quite similar.
could arrest a propagating crack. For fracture strain ¢;) the estimate of the power-law ex-

The flocs may arrest also a propagating main or daughtgsonent was found to be~0.56, which is also in agreement
cracks. When disorder is small this is not likely to occur, andwith the theoretical consideration&9]. However, the frac-

a crack propagates straight and produces long daughtelire stress tends to 0 much faster<(3.2). The reason for
cracks. However, when the system is more disordered, thgis is depicted in Fig. 5, where we show a typical stress vs
flocs are likely to arrest daughter cracks, resulting in onlystrain curve for a small system. When the fracture strain
short daughter cracks. When the main crack is arrested by gecreases by an amounig;;, the fracture stress decreases
floc, a daughter crack is likely to propagate through a wealpy an amount\ o, ~A e;,E( 1), WhereE(e) is the effec-
spot and becoming a new main crack. This phenomenofyve Young's modulusio/de. Due to the phenomenological
gives rise to crack curving. dissipation,E(€) is fairly small for largee (see Fig. 5.

Systems in which disorder is reflected in the elastic paywhen the fracture strain decreases even further by an amount
rameters are found to be stronger than systems, where diso{¢,,, the fracture stress decreases by an amount
der is in the rupture threshold. In these systems crack arregty, ,~A¢,E(er,).  Since in  dissipative  systems
is more often seen than in systems, where the disorder is if(¢.,)>E(e;,) the fracture stress tends to zero faster than
the rupture threshold. Thus systems with large disorder in thge fracture strain.
elastic parameters behave quantitatively different from sys-
tems with small disorder in the rupture threshold, even if the
strength of these systems is the same.

In order to study the finite size scaling behavior of the In the case of topological disorder we chose the initial
stress-strain curves we used 11 different system sizes of redtcations of mass sites at random and set the elastic param-
angular shape with widthX direction being three times the eter values inversely proportional to the initial lengths of the
height (Y direction. The largest system we studied consistedbonds. In the model only nearest-neighbor interaction is be-
of ~2x10° mass sites. The density distribution was gener-ing considered. In Fig. 6 we show the neighbor distribution

Y

C. Topological disorder
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Estimated Young’'s modulus
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FIG. 5. Stress ¢) vs strain €) in a small system with corre- loge(a/f3)

lated density disorder. For small strain the Young's modulus is

larger than for large strain. Thus the fracture stress tends to 0 faster FIG. 7. Poisson ratio vs Ifp/) (open circlegof topologically
than the fracture strain. disordered systems and sigmoid functigcurved ling fitted to

these data. The estimated Young moduli coincides with the true
of nearest-neighbor mass sites taken from four topologicallyroung moduli reasonably welbblack dots and straight lingsee
disordered system@oundaries excludedin this figure the text.
lower limit for the bond length, due to the rejection criterion
of the random mass site placement procedure, is clearly Visyoung's modulus. We have calculated these relations from
ible. On the other hand the the upper limit of bond lengths ishe model by applying the strain of 10% to the system and
determined by the density of mass sites. In Fig. 6 we showgolving the stable configuration. The dependence of the Pois-
also the pair-distribution functiof80] for distances smaller son ratio on the ratiar/ 8 is depicted in Fig. 7. We found
than roughly 3 times the nearest-neighbor distance. There W@at the deviation in the Poisson ratio was small; all the
see a strong negative correlation, since the existence of shasbtained values (50 topologically disordered systems for a
bonds was prohibited. Then at about the nearest neighbgjiven ratioa/g) are shown in Fig. 7. On a semilogarithmic
distance there exists a strong positive correlation due to thgcale the Poisson ratio seems to be of the form of a sig-
given density(determined by the number of sites per are&.  moid function. It is noteworthy that fon= 8 the Poisson
the system. For long distances we do not see any correlgatio was 0 regardless of the initial configuration. Thus we
tions. In Fig. 6 we also show the distribution of inverse bondmzay require one of the free parameters to be fixed such that
lengths, which is comparable to the distribution of elasticihe pojsson ratio is zero far= 8. As the sigmoid function is

constant of the bonds. _ exponential and has la(B8) as an argument, the Poisson ra-
In our model the elastic parameters determine the macrgjq can be given in a simpler form:

scopic features of the system, i.e., the Poisson ratio and the

1 1
V:3'90< 201 (alp) 0% 20111 O

In topologically disordered systems the elastic parameters
@j; and B;; were chosen inversely proportional to the initial
length of the bond. In the followingr and 8 denote the
average of these parameters. The Young’s modulus should
be of the same order asandB and go to zero as both and
B go to 0. Thus we were led to try an estimate of the form

E=aa+bB+ca’pt 9
0 3 4 5 -] 7 8

0 01 02 03 04 05 06 For numerical stabilityd should not be either 0 or 1. In fact,

FIG. 6. Bond lengthnearest-neighbor distancdistribution (a) this function could predict t.h.e macroscopic Young’s modu-
and pair-distribution functioiib) taken from four topologically dis- lus remarkably well. The fitting fa_ct(_Ja was found to_be
ordered systems. For short distances the distribution function is g€Xtremely close to 1. With the restrictian-=1 the correction
since the existence of such bonds is prohibited by the procedur®@rameters were~0.24,c~0.47, andd~0.59. In Fig. 7 the
Then there is a strong positive correlation at the point determined@croscopic Young's modulus is plotted versus its estimate.
from the density of sites. For large distances the distribution isThe density of the bonds does not affect the Young’s modu-
uncorrelated. This was checked until the boundary effects becamléls, since the mean of the elastic parameters is given, and the
significant, i.e., up to 4.5. The elastic constants were selected prdocations for the bonds are random. In addition, the Young’s
portional to the inverse of bond lengths, distributi@h modulus seems not to depend on the shape of the system.

(b)
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FIG. 9. Daughter crack’'s distance from the main crack vs
daughter crack’s distance along tKeaxis in a topologically disor-
dered system and power-law fit to these data. Long daughter cracks
have a branching angle of 15°.

TAN

it. Before loading, a cut was introduced to the left free
boundary of the system to serve as a seed for crack propa-
gation. The length of this cut was 5% of the width of the
system.

A typical fracture path is presented in Fig. 8. It shows a
relatively straight path in the beginning of propagation and a
complicated, branched form later. The daughter cracks are
seen to curve during propagation such that the branching
: angle depends on the length of the daughter crack. This is

'@"'%rﬂ illustrated in Fig. 9, where we show the daughter crack’s

‘;‘l}’éﬂ&@ distance from the main crack as a function of the length of
7 ,,3,427 ; 9

o the daughter crack along théaxis. The data obeys roughly

a power Iaw:yd=ax2. For smallxy the distance from the
main crack is not of functional form, since these small
branches are probably responsible for the mist behavior of
the fracture surface. For larggg the given functional form
is clearly seen and these large branches are seen as the
hackle behavior. It is quite subjective to determine, which
cut bonds belong to the mist region and which are classified
as branches. Here the bonds not on the main crack are treated
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FIG. 8. Typical fracture path obtained from a topologically dis-
ordered system. The triangulation of 1/9 of the system and crack
propagation in it are presented below the path. o . . . . . . —
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In the simulation of dynamic fracture the elastic param- reduency

eters were chosen to be on average 500 andj=250, FIG. 10. Spectrum of crack speed in topologically disordered
which corresponds to the Poisson ratie 0.1. The mass of a systems obtained as an average of four runs. It shows that crack
site was set to one third of the mass of triangles surroundingpeed does not fluctuate randomly.
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as branches, and therefore the extremely short branches com- VI. SUMMARY

plicate the curving behavior. The power-law exponientas A dynamical dissipative model was used to study fracture
found to be 0.650.02. This is in good agreement with the i, systems with two types of disorder. First we studied cor-
experimental value 0.71]. We also found that the longest rejated mass density variation, which resulted in similar
daughter cracks appear with an angle of about 15°, which igariations in either the elastic parameters or the fracture
in excellent agreement with experiments in brittle amorphoushreshold. Results also show similar finite size scaling in the
materials[31]. strength of the system as proposed by Duxbeinal. [29].

In the unstable region of dynamic fracture the crack speedhe flocculated density variations are seen as a mechanism
changes both in magnitude and direction. Sharon anfbr crack arrest. As a second type of disorder we studied
Fineberg[1] have found experimental evidence that thesesystems, in which the initial locations for mass sites were
changes are oscillatory rather than random fluctuations. Iselected randomly. We showed, how to select the elastic pa-
addition, Blumenfeld 11] by using the Yoffe solutio32] rameters for a given Poisson ratio and Young’s modulus.
has shown theoretically that the crack speed is oscillatorycrack speed oscillation was seen as well as daughter crack
Also when noise was added the situation became more con§lrving. The experimentally found scaling behavior of crack
plicated showing intermittency and quasiperiodicity. Ourcurving was confirmed.

Born-Maxwell model with no disorder shows clear oscilla-

tory behavior but in the case of topological disorder the ACKNOWLEDGMENTS
model produces a behavior which is characterized with a This work is funded by the Academy of Finland through
fairly wide power spectrum of the crack speed, see Fig. 10the Material Physics graduate school and MATRA grant.
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